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Abstract. The O(3) symmetric Anderson model is an example of a system which has a stable low energy
marginal Fermi liquid fixed point for a certain choice of parameters. It is also exactly equivalent, in the
large U limit, to a localized model which describes the spin degrees of freedom of the linear dispersion
two channel Kondo model. We first use an argument based on conformal field theory to establish this
precise equivalence with the two channel model. We then use the numerical renormalization group (NRG)
approach to calculate both one-electron and two-electron response functions for a range of values of the
interaction strength U . We compare the behaviours about the marginal Fermi liquid and Fermi liquid fixed
points and interpret the results in terms of a renormalized Majorana fermion picture of the elementary
excitations. In the marginal Fermi liquid case the spectral densities of all the Majorana fermion modes
display a |ω| dependence on the lowest energy scale, and in addition the zero Majorana mode has a delta
function contribution. The weight of this delta function is studied as a function of the interaction U and
is found to decrease exponentially with U for large U . Using the equivalence with the two channel Kondo
model in the large U limit, we deduce the dynamical spin susceptibility of the two channel Kondo model
over the full frequency range. We use renormalized perturbation theory to interpret the results and to
calculate the coefficient of the lnω divergence found in the low frequency behaviour of the T = 0 dynamic
susceptibility.

PACS. 71.10.Hf Non-Fermi-liquid ground states, electron phase diagrams and phase transitions in model
systems – 71.27.+a Strongly correlated electron systems; heavy fermions

1 Introduction

The O(3) symmetric Anderson model is a modified form
of the symmetric Anderson model which was introduced
by Coleman and Schofield [1]. The Hamiltonian can be
expressed in the form,

H =
∞∑

n=0,σ

tn(c†n+1,σcnσ + c†nσcn+1,σ)

+
∑
σ

Vσ(c†0σcdσ+c†dσc0σ)+V2(c†d↓c
†
0↓+c0↓cd↓) (1)

+U
(
nd↑ −

1
2

)(
nd↓ −

1
2

)
, (2)

where c†dσ and cdσ are creation and annihilation opera-
tors for the localized impurity d state with spin σ, with
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V↑ = V , V↓ = (V0 + V )/2 and V2 = (V0 − V )/2. The elec-
trons in the impurity state interact via a Coulomb matrix
element U , and are coupled by the hybridization terms to
the conduction electrons which are in the form of a tight-
binding chain with c†nσ, cnσ, the creation and annihilation
operators at site n, and tn is the nearest neighbour hop-
ping matrix element. The model is basically a symmetric
Anderson model (V = V0) with an anomalous hybridiza-
tion term (V 6= V0) which breaks both spin and charge
conservation. It takes a simpler form when expressed in
terms of Majorana fermions operators. For the impurity d
electrons the Majorana fermion operators are defined by

d1 =
1√
2

(cd↑ + c†d↑) d2 =
i√
2

(cd↑ − c†d↑), (3)

d3 =
−1√

2
(cd↓ + c†d↓) d0 =

i√
2

(cd↓ − c†d↓), (4)

which satisfy the commutation relations,

{dα, dβ} = δα,β , (5)

where {} indicates an anticommutator.
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The Majorana operators for the conduction electrons
are similarly defined by

χ1(n) =
einπ/2

√
2

((−1)ncn↑ + c†n↑),

χ2(n) =
ieinπ/2

√
2

((−1)ncn↑ − c†n↑),

χ3(n) =
−einπ/2

√
2

((−1)ncn↓ + c†n↓)

χ0(n) =
ieinπ/2

√
2

((−1)ncn↓ − c
†
n↓), (6)

with commutation relations as in (5).
Using the Majorana fermion representation the O(3)

Anderson model can be expressed in the form

H = i
3∑

α=0

V χα(0)dα + iV0χ0(0)d0

+i
3∑

α=0

∞∑
n=0

tnχα(n+ 1)χα(n) + Ud1d2d3d0, (7)

which is clearly invariant under the O(3) group of trans-
formations of the basis of the 1, 2, 3 Majorana fermions.

There are two aspects of this model that make it wor-
thy of study. One is that the model displays non-Fermi liq-
uid behaviour corresponding to marginal Fermi liquid the-
ory in lowest order perturbation theory for V0 = 0 [2]. The
marginal behaviour results from singular scattering with
an uncoupled local Majorana fermion mode. Numerical
renormalization group (NRG) calculations [3] have estab-
lished that this marginal Fermi liquid behaviour persists
down to T = 0 and that there is an associated residual
entropy of ln(2)/2. This fixed point behaviour has been
interpreted in terms of the free renormalized Majorana
fermion modes. The many-body excitations constructed
from these free Majorana fermions account for the excita-
tions found at the fixed point in the NRG calculations [4].
For V0 6= 0 there is no uncoupled local Majorana fermion
mode and the thermodynamic behaviour corresponds to
Fermi liquid theory in terms of renormalized Majorana
fermions.

The original reason Coleman and Schofield [1] stud-
ied this model is because, in the large U regime under a
Schrieffer-Wolff transformation, it maps into a localized
spin model, the σ-τ model [5], which has a similar form
to the two channel Kondo model (TCKM). The differ-
ence is that the localized spin S = 1/2 is coupled via an
exchange interaction to the spin and the isospin of con-
duction electrons in a single channel rather than the spins
of the conduction electrons in two distinct channels as
in the TCKM (for a comprehensive review of this model
see [6]). The Hamiltonian of the model can be written

in the form,

H = Sd · [J1σ(0) + J2τ (0)]

+
∞∑

n=0,σ

tn(c†n+1,σcnσ + c†n,σcn+1,σ), (8)

where Sd is the operator for the localized spin and J1, J2

are the two exchange couplings.
The spin operators,

σ+(n) = c†n↑cn↓, σ−(n) = c†n↓cn↑,

σz(n) =
1
2

(c†n↑cn↑ − c
†
n↓cn↓), (9)

in the basis spanned by the two singly occupied fermion
states, |0(↑), 1(↓)〉 and |1(↑), 0(↓)〉, give a representation
for the SU(2) algebra for spin σ = 1

2 . The isospin opera-
tors,

τ+(n) = (−1)nc†n↑c
†
n↓, τ−(n) = (−1)ncn↓cn↑,

τz(n) =
1
2

(c†n↑cn↑ + c†n↓cn↓ − 1), (10)

give a representation of the same algebra in the space
spanned by the zero and double occupation states, |0, 0〉
and |1, 1〉. By applying the Schrieffer-Wolff transformation
it can be shown that the σ-τ model corresponds to the lo-
calized or large U limit of the O(3) Anderson model with
the coupling J1 and J2 given by

J1 =
2V (V + V0)

U
J2 =

2V (V − V0)
U

· (11)

The channel isotropic model J1 = J2 = J , corresponds to
V0 = 0 in the O(3) Anderson model. In this case one of
the Majorana fermions modes is uncoupled and the sin-
gular scattering of the conduction electrons gives rise to a
marginal Fermi liquid fixed point. In terms of Majorana
fermions the σ-τ model (12) takes the form,

H = i
3∑

α=0

∞∑
n=0

tnχα(n+ 1)χα(n)− iJ
2
Sd · χ(0)× χ(0),

(12)

where χ(n) = (χ1(n), χ2(n), χ3(n)).
Coleman et al. [5] put forward arguments that this

one band localized model has the same fixed point and
low energy behaviour as the two channel Kondo model. A
bosonization approach by Schofield [7] supported this con-
jecture, and so did a comparison of our numerical renor-
malization group results [3] for the large U O(3) Anderson
model with the results for the two channel model.

In the first section of this paper we show that if
we assume linear dispersion for the conduction elec-
trons the relationship between the σ-τ model and the
spin degrees of freedom of the two channel model
becomes an exact one, and what is more it is not
confined purely to the asymptotic low energy regime
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but applies to all relevant energy scales. In the subse-
quent sections we extend our earlier numerical renormal-
ization group calculations [3] for the O(3) Anderson model
to the calculation the dynamical response functions at
T = 0 both for the marginal Fermi liquid and Fermi
liquid cases, and interpret these results using renormal-
ized perturbation theory for the Majorana fermions [4,8].
Finally we use the equivalence of the O(3) Anderson model
and the two channel Kondo model in the large U limit
to deduce the form of the dynamic spin susceptibility for
the two channel Kondo model over all relevant energy
scales. We use renormalized perturbation theory to de-
duce the coefficient of the lnω divergence found in the
low frequency behaviour of the real part of the dynamic
susceptibility at zero temperature.

2 Exact equivalence to the two channel
Kondo model

We begin by showing that the Majorana fermion descrip-
tion, used to formulate the O(3) Anderson model and
σ-τ models, can emerge quite naturally for the two chan-
nel model as a representation of the algebra of the total
spin current of the two channels. For linear dispersion and
no cut-off we can express the Hamiltonian of the channel
isotropic TCKM model in the form,

H = H0 +HI

H0 =
vf

2π

2∑
j=1

∑
σ=↑,↓

∫ +∞

−∞
dx : ψ†j,σ(x)(i∂x)ψj,σ(x) :

HI =
∑

a=x,y,z

JaS
a
dJ

a
s (0), (13)

on taking a Fourier transform to a continuum variable
x, where vf is the Fermi velocity, j is a channel index,
and the conduction electron operators between the colons
have to be to normal ordered. We have assumed s-wave
scattering only and replaced the incoming and outgoing
waves with two left-moving electron fields ψj,σ(x); Jas (x)
are the conduction electron spin current operators

Jas (x) =
∑
j,σ,σ′

: ψ†j,σ(x)saσ,σ′ψj,σ′(x) : (14)

sa being spin-1/2 matrices. We can also introduce charge
and flavour currents

Jc(x) =
∑
j,σ

: ψ†j,σ(x)ψj,σ(x) :

Jaf (x) =
∑
j,j′,σ

: ψ†j,σ(x)taj,j′ψj′,σ(x) : (15)

where taj,j′ are generators of an SU(2) symmetry group.
Following Affleck and Ludwig [10], the free part of the
Hamiltonian can be rewritten as a sum of three commuting

terms by the usual point-splitting procedure (Sugawara
construction):

H0 =
vf

2π

∫ +∞

−∞
dx
[

1
8

: Jc(x)Jc(x) : +
1
4

: J f(x) · J f(x) :

+
1
4

: J s(x) · J s(x) :
]
, (16)

while the interaction term is expressed in terms of the
electron spin currents and the impurity spin only. The
information about the number of channels is contained in
the commutation relations obeyed by the spin currents

[Jas (x), Jbs (x′)] = iεabcJas (x)δ(x − x′) +
ki
4π
δa,bδ

′(x− x′)
(17)

indicating that Jas (x) form an SU(2) level k = 2
Kac-Moody algebra. Meanwhile, the charge and flavour
currents satisfy

[Jc(x), Jc(x′)] = 2kiδ′(x− x′),
[Jaf (x), Jbf (x′)] = iεabcJaf (x)δ(x − x′)

+
ki
4π
δa,bδ

′(x− x′). (18)

They form a U(1) Kac-Moody and another SU(2) level-2
Kac-Moody algebra, separately.

It is now quite natural to introduce a Majorana repre-
sentation of the spin current operators in the form,

Jxs (x) = −i : χ2(x)χ3(x) :,
Jys (x) = −i : χ3(x)χ1(x) :,
Jzs (x) = −i : χ1(x)χ2(x) :, (19)

where χ1(x), χ2(x), and χ3(x) are left-moving free Majo-
rana fermion fields. It can be shown that this representa-
tion reproduces the SU(2) level-2 Kac-Moody commuta-
tion relations. Our approach differs from earlier conformal
field theory approaches to the TCKM [14–16], where Ma-
jorana fermions are introduced only at a later stage after
bosonization. It is important to note that this Majorana
representation of the spin currents is only appropriate for
the two channel model as it leads to a level-2 algebra.
It would be inappropriate for the single channel Kondo
model where the corresponding spin current generates a
level-1 algebra.

In a similar way, we can also introduce Majorana rep-
resentations for the flavour currents

Jxf (x) = −i : χ′2(x)χ′3(x) :,
Jyf (x) = −i : χ′3(x)χ′1(x) :,
Jzf (x) = −i : χ′1(x)χ′2(x) :, (20)

which reproduces the commutation relations satisfied by
the flavour currents, and

Jc(x) = −2i : χ′4(x)χ′5(x) : (21)
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can represent the charge current operator. Note that χ′α
with α = 1, 2, 3, 4, 5 are also left-moving free Majorana
fermion fields. It is well-known that the dynamics of
charge, flavour, and spin are completely determined by the
commutation relations of the current operators. Though
the spin currents of the two channel Kondo model can
be represented in terms of three Majorana fermion fields
χα(x) (α = 1, 2, 3), we emphasize that they can not be
given any simple physical interpretation in terms of the
original conduction electrons ψj,σ(x).

At this point we have the current operator terms
in the Hamiltonian as quartic in the Majorana fields.
The Sugawara construction enables one to write ki-
netic energy terms, which are quadratic in field oper-
ators, as quartic terms. This is what was done earlier
in writing the free part of the Hamiltonian in form of
equation (16), and it is convenient if one is pursuing
a purely algebraic approach as used in the conformal
field theory [10]. However for our purposes it is more
convenient now to perform an inverse Sugawara con-
struction by the usual point-splitting procedure again,
and rewrite the terms quartic in the Majorana fermions
as kinetic energy terms which are quadratic [11,12]:

: Jc(x)Jc(x) : = 4
5∑

α=4

: χ′α(i∂x)χ′α(x);

: J f(x) · J f(x) : = 2
3∑

α=1

: χ′α(i∂x)χ′α(x);

: J s(x) · J s(x) : = 2
3∑

α=1

: χα(i∂x)χα(x). (22)

The model Hamiltonian is transformed and divided into
the following two parts,

Hc +Hf =
vf

4π

5∑
α=1

∫ +∞

−∞
dx : χ′α(x)(i∂x)χ′α(x) :,

Hs =
vf

4π

3∑
α=1

∫ +∞

−∞
dx : χα(x)(i∂x)χα(x) :

− iJ
2
Sd· : χ(0)× χ(0) : . (23)

Hc + Hf describes the non-interacting charge and
flavour degrees of freedom. It has a symmetry group
U(1)⊗ SU(2)2 = SO(5) and is expressed by five free Ma-
jorana fermion fields χ′α(x) (α = 1, 2, 3, 4, 5). Hs is the
main part of the model and describes the spin degrees of
freedom with three left-moving Majorana fermion fields
χα (α = 1, 2, 3) interacting with the impurity spin. It has
the symmetry SU(2)2 or SO(3) so that the full Hamil-
tonian has the symmetry group SO(5)⊗ SO(3), which is
represented by eight different Majorana fermion fields.

In the two channel model Hamiltonian, Hs given in
equation (24) is the only part which includes an interac-
tion with the impurity spin. This part of the Hamiltonian
is exactly equivalent to the vector part of the σ-τ model

defined in equation (12). The zero Majorana fermion con-
tribution to (12) is completely decoupled from the other
modes so we can separate it out, and if we take the con-
tinuum limit with linear dispersion equation (12) can be
written in the form,

H = Hsc +Hvec

Hsc =
vf

2π

∫ +∞

−∞
dx : χ0(x)(i∂x)χ0(x) :

Hvec =
vf

2π

3∑
α=1

∫ +∞

−∞
dx : χα(x)(i∂x)χα(x) :

− iJ
2
Sd· : χ(0)× χ(0) :, (24)

and can identify Hvec with Hs. This implies that the ap-
plication of the σ-τ model is not restricted to the very low
energy regime but can be used to calculate the impurity
contribution to the thermodynamics of the two channel
Kondo model over the full temperature range. This result
is exact subject only to the requirement of linear disper-
sion for the conduction electrons (this is not evident in
the approaches that use bosonization [7,14–16]). The re-
sult implies that the O(3) Anderson model in the large U
regime can be used to calculate the spin correlation func-
tions of the two channel Kondo model over the complete
temperature and frequency range, ω, T � D, where D is
the cut-off imposed on the conduction electrons. We ex-
ploit this equivalence to calculate the dynamic susceptibil-
ity of the TCKM in the last section of the paper. Though
we have restricted our derivation to the channel isotropic
case J1 = J2 = J , the result can be generalized to the
channel anisotropic case J1 6= J2.

The fact that we have been able to establish the exact
equivalence of the linear dispersion TCKM and σ-τ mod-
els, not just for the low energy regime but over the full
parameter range of the model, is at first sight a little sur-
prising. A feature of the general TCKM is that there is a
strong coupling regime in which the impurity can be over-
screened, and this strong coupling fixed point was shown
by Noziéres and Blandin [13] to be an unstable one. Im-
purity overscreening on the other hand cannot occur in
the strong coupling regime of the σ-τ model as the spin
and isospin are mutually exclusive channels and they can-
not both screen the impurity simultaneously. The strong
coupling limit for the σ-τ model, in apparent contrast to
that of the two channel model, gives a stable fixed point.
However, to access the overscreened states of the standard
TCKM requires the coupling J to be much greater than
the bandwidth D. In the linear dispersion two channel
model D → ∞ so these states are not accessible in this
version of the two channel model. We must distinguish
two strong coupling limits. One in which the limit J →∞
is taken with a finite cut-off or before the limit D→∞ is
taken, and one in which the limits are taken in the oppo-
site order. The first leads to overscreening and an unstable
fixed point whereas the latter leads to a screened stable
fixed point.
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A parallel situation arises in the standard Ander-
son model. If one assumes linear dispersion then the pa-
rameter regime in which the impurity level εd lies out-
side the conduction band cannot be accessed. The model
with the level within the conduction band, and the one
with the level below the conduction band, in the Ander-
son model case have the same fixed point but they do have
different expressions for the Kondo temperature (see [9]).

Before leaving this topic we briefly show that, because
the Majorana representation of the TCKM is equivalent to
the large U limit of the O(3) Anderson model, we can use
results for the O(3) model to confirm the description of the
TCKM fixed point as one corresponding to renormalized
asymptotically free Majorana fermions [4,5,14–16]. Our
earlier numerical renormalization group calculations [3] es-
tablished that the fixed point of the O(3) Anderson model
corresponds to free Majorana fermions independent of U .
This implies that the fixed point corresponds to the non-
interacting model U = 0. The many-body excitations and
their degeneracies at the fixed point, as found in the NRG
calculations, can be explained in terms of the many body
excitations built up from the three non-interacting hy-
bridized 1, 2, 3 Majorana fermion modes, combined with
the excitations arising from the unhybridized zero Majo-
rana fermion modes described by Hsc. This interpretation
of the fixed point in terms of the O(3) Anderson model
is simpler than the equivalent interpretation as the strong
coupling limit of the σ-τ model. In the latter approach
a change of boundary condition for the 1, 2, 3 Majorana
fermion modes, which interact with the impurity, has to
be invoked as a result of the strong coupling, relative to
that of the uncoupled 0 Majorana fermion mode. This is
not necessary in the Anderson model description as there
is naturally a difference of boundary condition at impu-
rity in the hybridized and unhybridized terms. The leading
(dangerously) irrelevant interaction term, which leads to
the logarithmically divergent contributions to the specific
heat coefficient and susceptibility in these models, can be
interpreted as the renormalized interaction term Ū in the
Anderson model (see [4,5] for further details).

To derive a complete description of the many-body
excitations and their degeneracies at the fixed point for
the TCKM from the U = 0 O(3) Anderson model we
simply have to replace the uncoupled 0 Majorana degree
of freedom described by Hsc by the five uncoupled Ma-
jorana degrees of freedom in Hc and Hf , which describe
the charge and flavour excitations. There are two slightly
different sets of excitations, one set corresponding to a
chain of even sites (sector A) and another set correspond-
ing to an odd number of sites (sector B). When these are
combined, as shown in Table 1, they reproduce the many-
body energy levels and degeneracies found in the NRG
calculations [17] and conformal field theory calculations
[10] for the TCKM. Since the interaction is restricted to
the spin part of the Hamiltonian Hs the leading (danger-
ously) irrelevant interaction which leads to logarithmically
divergent contributions to the specific heat coefficient and
susceptibility in the TCKM is exactly the same as the
renormalized interaction Ū ∼ TK of the O(3) Anderson

Table 1. Many-body excitation energies and their correspond-
ing degeneracies (dg) of the two channel Kondo model corre-
sponding to the single particle spectrum at the low-energy fixed
point. The energy levels without primes correspond to sector
A, and those with primes to sector B.

Eex/(πvF/l)
P
k nkεk dg total dg

0 0 2 2

1/8 0′ 4 4

1/2 ε1/2 10 10

5/8 ε′1/2 12 12

1 ε1 6

2ε1/2 20 26

9/8 ε′1 20

2ε′1/2 12 32

3/2 ε3/2 10

ε1 + ε1/2 30 60

3ε1/2 20

13/8 ε′3/2 12

ε′1 + ε′1/2 60 76

model, where TK is the Kondo temperature. We will use
this explicitly later in Section 4 to calculate the dynamic
susceptibility of the TCKM from that of the O(3) Ander-
son model.

3 Numerical renormalization group
calculations

In this section we extend the numerical renormaliza-
tion group method to calculate the dynamic features
of the O(3) Anderson model. For the basic details of
the NRG method as applied to this model we refer to
the earlier paper [3] where the thermodynamic prop-
erties were calculated. Calculation of the dynamic be-
haviour via the NRG approach is rather more involved
because additional matrix elements have also to be calcu-
lated in the sequence of iterative diagonalizations. The
general details of the NRG approach to the calcula-
tion of spectra for impurity models are given in [20,21].
Because both charge and spin are not conserved for this
model the calculations here differ from the standard case
in a number of respects and the relevant details are given
in the appendix.

3.1 Spectral densities of single particle Green’s
functions

The spectral density Aσ(ω) of the single particle Green’s
function of spin σ at the impurity site is given by

Aσ(ω) =
1
Z

∑
nm

∣∣∣∣〈n∣∣∣c†dσ∣∣∣m〉∣∣∣∣2δ(ω − (En − Em)
)

×
(
e−βEm + e−βEn

)
(25)
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where En are the exact eigenvalues of the Hamiltonian and
Z is the partition function (Z =

∑
n exp(−βEn)). This is

evaluated using the many-body states calculated in the se-
quence of iterative diagonalizations of the NRG. Because
of the decreasing energy scales in the sequence of steps in
the NRG, the spectral density for a particular frequency
have to be calculated from the step in the sequence corre-
sponding to the appropriate energy scale. The spectrum is
then built up from the complete set of NRG steps. Though
the method has been developed for finite temperature sit-
uations, the procedure is more straightforward and more
accurate for the case T → 0, and we have restricted the
calculations here to the low temperature limit. Though a
large number of states are retained at each step in the
NRG calculation (of the order of 300-500 not including
degeneracies), the spectrum is discrete and to obtain a
continuous curve a broadening is introduced which de-
creases logarithmically with the energy scale. The advan-
tages of this approach over alternative methods, such a
Monte Carlo, are that it can be used at very low tempera-
tures, can be used for any value of U , and the results can
be checked against known sum rules and identities. The
details of the low energy spectrum can be calculated to a
very high resolution. For further details of the approach
we refer to the papers cited earlier [20,21].

Due to the anomalous hybridization term, the O(3)
Anderson model does not conserve either total spin or to-
tal charge. However, the combination of total spin plus
total isospin T is conserved and the many-body states
and the eigenstates |m〉 can be classified using the quan-
tum numbers T and Tz associated with the total of this
angular momentum and its z-component (note that in ref-
erence [4] the symbol j was used for this quantity, but
here we revert to the earlier notation T used in [3,22]).
In evaluating (25) the sum over the degeneracies associ-
ated with Tz can be done explicitly as explained in the
appendix. The single particle Green’s functions for the
impurity can be expressed as linear combinations of
the Green’s functions for the Majorana fermions, Gαβ(t−
t′) = −iθ(t − t′)〈{dα(t)dβ(t′)}〉, for α, β = 0, 1, 2, 3 us-
ing equations (3) and (4). In the absence of applied field
these Green’s functions are diagonal (∝ δα,β), and due
to the O(3) symmetry those corresponding to α = 1, 2, 3
are equal. We can deduce the corresponding spectral den-
sities, ρα(ω), using equation (25). The results for these
spectra for V0 = 0, the non-Fermi-liquid case, are shown
in Figures 1, 2, 3 and 4 for a range of values of the inter-
action U , and corresponding results for V0 6= 0 are shown
in Figures 8, 9 and 10.

In Figure 1 the spectral density for the uncoupled
α = 0 Majorana fermion (scalar) is shown together with
those for the α = 1, 2, 3 Majorana fermions (vector) which
are hybridized with the conduction electrons (and which
are all identical). There is an additional delta function
contribution to the α = 0 spectral density which is not
shown but its weight as a function of U is shown in Fig-
ure 6. What is clear is the cusp-like peak in the spectral
density of the scalar Majorana fermion at Fermi-level and
the fact that the height of this peak is U dependent. The

−2e−05 −1e−05 0 1e−05 2e−05
ω

0.0e+00

1.0e+03

2.0e+03

3.0e+03
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ω
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1,2,3
0  U/π∆ = 1.5
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Fig. 1. The spectral density ρ (ω) of the Majorana fermion im-
purity Green’s function in the marginal Fermi liquid situation:
V = 0.01414, V0 = 0.0

�
∆ = 10−4π, ∆0 = 0.0

�
.

−2e−05 −1e−05 0 1e−05 2e−05
ω

0.0e+00

1.0e+03

2.0e+03

3.0e+03

ρ 0(ω
)

U/π∆ = 1.0
U/π∆ = 1.5
U/π∆ = 2.0

−4e−07 0 4e−07

Fig. 2. The spectral density ρ0 (ω) of the α = 0 Majorana
fermion Green’s function in the marginal Fermi liquid situa-
tion: V = 0.01414, V0 = 0.0

�
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�
. The inset

shows the |ω| dependence near the Fermi level.

spectral density for the vector Majorana fermions also has
a cusp-like peak at the Fermi-level but, in contrast to the
scalar case, its value at the Fermi level is independent of
U . In Figure 2 the spectral densities of the scalar (α = 0)
Majorana fermion are shown on their own with an inset
showing the linear behaviour in the neighbourhood of the
Fermi level. The corresponding plots for the vector Majo-
rana fermions are given in Figure 3, which also show linear
behaviour in the neighbourhood of the Fermi-level.

We can analyze these results using the renormalized
perturbation theory developed in earlier work [4,8]. The
perturbation theory is in terms of renormalized propaga-
tors for the Majorana fermions, and renormalized parame-
ters, ∆̄ = z̄∆, ∆̄0 = z̄0∆0, and Ū =

√
z̄0z̄3Γ0123(0, 0, 0, 0),

where z̄, z̄0, are the wavefunction renormalization
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is within 2% of the value given by the Friedel sum rule.

factors derived from the non-singular contributions to
the self energies, Σ(ω) and Σ0(ω), associated with the
α = 1, 2, 3 and α = 0 Majorana fermions respectively,
∆α(ω) = πV 2

α ρ0(ω) where ρ0(ω) is the density of states of
the conduction electrons, and Γ0123(ω1, ω2, ω3, ω4), is the
irreducible four vertex for the Majorana interaction. The
retarded Green’s function for the Majorana fermions then
has the form,

Gαα(ω) =
z̄α

ω + i∆̄α − Σ̄(r)
αα(ω)− Σ̄(s)

αα(ω)
, (26)

where Σ̄(r)
α (ω) and Σ̄

(s)
α (ω) are the regular and singular

renormalized self-energies, and we have taken the wide
band limit with ∆α(ω) independent of ω. In the renor-
malized perturbation expansion there are counterterms
which have to be included to satisfy the renormalization
conditions and the Majorana fields are rescaled to absorb
the wavefunction renormalization factors so that the free
propagators in the expansion are 1/(ω + i∆̄α) (see [4] for
further details).

For the non-Fermi liquid case V0 = 0 the leading order
low frequency correction to the renormalized self-energy
Σ̄(ω) for the α = 1, 2, 3 Majorana fermions comes from
the second order diagram for the singular part Σ̄(s)(ω)
shown in Figure 5a. The result is

ReΣ̄(s)(ω) =
(
Ū

π∆̄

)2

ωln
( ω
∆̄

)
, (27)

and

ImΣ̄(s)(ω) = −π
2

(
Ū

π∆̄

)2

|ω| (28)
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for T = 0. As U → 0, ∆̄α → ∆α, Ū → U and this result
goes over to that of the standard second order perturba-
tion theory. For the density of states of the α = 1, 2, 3 Ma-
jorana fermions in the neighbourhood of the Fermi level
we find,

ρα(ω) =
1
π∆

[
1− π

2

(
Ū

π∆̄

)2 |ω|
∆̄

+ O(ω2ln2(ω))

]
, (29)

for α = 1, 2, 3. We see from this result that the density
of states at the Fermi level is 1/π∆, independent of U ,
which is the same result as for the O(4) Anderson model,
and that the leading correction term is linear in |ω|. These
results explain the features seen in the plots of the spectral
densities of the vector Majorana shown in Figures 1 and 3.
The linear term in the spectral density at the Fermi level
is seen clearly and the value at the Fermi-level agrees with
the theoretical value 1/π∆ to within 2%.

The second order contribution to the renormalized self
energy Σ̄0(ω) for the α = 0 Majorana fermion is the same
as the for the O(4) model as it only involves explicitly
the propagators of the renormalized α = 1, 2, 3 Majorana
fermions (see Fig. 5b). To lowest order the result for the
imaginary part is

ImΣ̄0(ω) = −∆̄
2

(
Ū

π∆̄

)2 ( ω
∆̄

)2

(30)

for T = 0. The leading term for the real part
of the self-energy is linear in ω but is cancelled
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Fig. 6. The wavefunction renormalization factor, z0, deter-
mined by the coefficient of δ (ω) in the spectral density, ρ0 (ω).
Exponential behaviour for large U/π∆ is indicated by the lin-
ear region of the inset ln (z0) plot.

by the counterterm contribution to comply with the renor-
malization conditions. When this is inserted into equa-
tion (26) then we find for the corresponding spectral
density

ρ0(ω) = z0δ(ω) +
z0

2π∆̄

(
Ū

π∆̄

)2

+ O(ω2). (31)

The delta function contribution at zero frequency reflects
the fact that the zero mode associated with the uncou-
pled α = 0 local Majorana fermion exists down to T = 0,
and it is this mode that leads to the anomalous entropy
of ln(2)/2. Its weight in the spectral density is reduced
to z0, which we cannot calculate within the renormal-
ized perturbation approach. However, we can calculate
it to leading order for small U/π∆, and the result is
z0 = 1/(1 + (3 − π2/4)(U/π∆)2). For large U/π∆, the
model can be related to the two channel Kondo model
and there is only one low energy scale, which is the
Kondo temperature. We expect, therefore, in this limit
that z0 ∼ TK/∆ which implies that for large U/π∆, that
z0 should tend to zero exponentially in the variable U/π∆.
This behaviour is consistent with the NRG results for the
delta function weight plotted as a function of U/π∆ shown
in Figure 6. The non-delta function contribution has a fi-
nite limit as ω → 0 given in renormalized perturbation
theory by the the second term in equation (31). Unlike
the spectra for the α = 1, 2, 3 Majorana fermions the value
of this contribution at the Fermi level depends on U and
monotonically increases with increase of U/π∆. We see
from equation (31) that to lowest order in U/π∆ it is pro-
portional to U2/(π∆)3. As the second order diagram in
the renormalized perturbation theory gives the exact re-
sult to order ω2 for ImΣ̄0(ω) there should be no further
contributions to the leading two terms in equation (31). In
the large U limit we deduced from a comparison of the re-
sults with those for the two channel Kondo model (see [4])
that Ū/π∆̄→ 1. The height of the peak at the Fermi-level
compared with that for the vector term in this limit is then

0
3

00

1

2

2

3 1

Fig. 7.

given by z̄0/2z̄ (using ∆̄ = z̄∆), and provides an estimate
of the ratio of the wavefunction renormalization factors of
the scalar and vector Majorana fermions.

The correction terms in (31) arise from terms in the
imaginary part of the self-energy which behave as ω4 for
small ω. The second order diagram in the renormalized
perturbation theory gives an contribution ω4 but there
are also contributions to this order from higher order di-
agrams. More important, however, are contributions to
the imaginary part which behave like ω2|ω|, as they result
in corrections to (31) which behave like |ω|. Such a term
is generated from the higher order diagram shown in Fig-
ure 7. The asymptotic contribution to the spectral density
from this diagram as ω → 0 is

−2z0π
2

(
Ū

π∆̄

)4 |ω|
∆̄2
· (32)

There may be other higher order diagrams which con-
tribute terms to this order ω but checking this is difficult.
The explicit evaluation of the higher order diagrams is
in general complicated and there does not seem to be any
simple way of seeing whether or not a diagram gives a con-
tribution of this order. It is clear from the results shown
in Figure 2 that there is a net contribution of this order as
there is clear |ω| dependence in the neighbourhood of the
Fermi level. If U is small compared to π∆ then the second
order diagram which gives an ω2 correction to (31) should
dominate over the leading |ω| term which is of fourth or-
der. The second order result corresponding to (31) is

ρ0(ω) =

(
1− (3− π2/4)

(
U

π∆

)2
)
δ(ω)

+
1

2π∆

(
U

π∆

)2(
1− ω2

2∆2

)
+ ... (33)

The ω2 behaviour of ρ0(ω) in the neighbourhood of the
Fermi level in the small U regime is evident in Figure 4
which gives a plot of ρ0(ω) for U/π∆ = 0.01.

For V0 6= 0 the zero Majorana fermion is no longer un-
coupled from the conduction electrons and for U = 0 the
corresponding spectral density has a resonance width of
∆̄0. Having lost the zero mode in this channel the scatter-
ing the vector Majorana fermions with the scalar Majo-
rana fermion with the interaction U is no longer singular.
For ∆̄0/∆̄ � 1, the resonance in the scalar channel is
very narrow compared with that of the vector channel,
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Fig. 8. The spectral density ρ (ω) of the Majorana fermion
impurity Green’s function in the Fermi liquid situation: V =
0.01414, V0 = 0.00014

�
∆ = 10−4π,∆0 = 10−8π

�
.

−2e−05 −1e−05 0 1e−05 2e−05
ω

3.0e+02

6.0e+02

9.0e+02

1.2e+03

1.5e+03

ρ 1,
2,

3(ω
)

U/π∆ = 1.0
U/π∆ = 1.5
U/π∆ = 2.0

−1e−07 0 1e−07

Fig. 9. The spectral density ρ1,2,3 (ω) of the α = 1, 2, 3 Ma-
jorana fermion Green’s function in the Fermi liquid situation:
V = 0.01414, V0 = 0.00014
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. The in-

set shows the region of the spectrum near the Fermi level where
flattening consistent with ω2 behaviour is observed. ρ1,2,3 (0)
is within 2% of the value given by the Friedel sum rule.

and there is a low energy range in which the behaviour
is very similar to that found in the marginal case. There
is a cross-over eventually on reducing the energy scale to
a Fermi-liquid form of behaviour. This is apparent in the
plots of the spectra in Figures 8, 9 and 10 for the case
∆0/∆ = 10−4. In Figure 8 the spectral densities of both
the scalar and vector Majorana fermions are shown for the
same set of values for U/π∆ as in Figure 1. Due to the
small value which was used for the ratio ∆0/∆ the spectra
for the vector Majorana fermions shown in Figure 9 are
quite similar to the corresponding curves for the marginal
Fermi-liquid case shown in Figure 3. The difference is only
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Fig. 10. The spectral density ρ0 (ω) of the α = 0 Majorana
fermion Green’s function in the Fermi liquid situation: V =
0.01414, V0 = 0.00014

�
∆ = 10−4π,∆0 = 10−8π

�
. The inset

shows the ω2 dependence near the Fermi level. ρ0 (0) is within
2% of the value given by the Friedel sum rule.

revealed when we compare the insets in the two figures.
On the very low energy scale around the Fermi level there
is a distinct flattening and rounding of the spectrum seen
in the inset in Figure 9, consistent with an ω2 behaviour in
contrast to the form |ω| seen in the inset in Figure 3 (which
persisted down to the lowest energy scales for which the
spectra were calculated).

If we apply second order perturbation theory for finite
∆0 then, in the low frequency range ω � ∆, the imaginary
part of the self-energy has the form,

ImΣ(ω)=
(
U

π∆

)2[
−ωtan−1

(
ω

∆0

)
+
∆0

2
ln
(

1+
ω2

∆2
0

)]
·

(34)

In the range ω > ∆0 this behaves essentially as |ω|, as
in the non-Fermi liquid case (29). Only in the very low
frequency range ω � ∆0 do we get the influence of the
Fermi-liquid fixed point and the ω2 behaviour. In the low
frequency limit ω � ∆0, the spectral density of the vector
Majorana fermions is then given by

ρα(ω)=
1
π∆

[
1− ω2

2∆∆0

{
2∆0

∆
+
(

1+
4∆0

∆

)(
U

π∆

)2
}]

,

(35)

for α = 1, 2, 3. For large values of U we can apply
the renormalized perturbation approach and the corre-
sponding result for the spectrum of the vector Majorana
fermions in the very low frequency limit ω � ∆̄0 is

ρα(ω) =
1
π∆

[
1− ω2

2∆̄∆̄0

{
2∆̄0

∆̄
+
(
Ū

π∆̄

)2
}]
· (36)

The spectra for the scalar Majorana fermion for ∆0 6= 0,
however, are very different from those for ∆0 = 0 as can
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been seen by comparing the results given in Figure 10
with those in Figure 2. There is no zero mode and the
peaks at the Fermi level coincide. In the very low frequency
range ω � ∆̄0 we find for ρ0(ω) using the renormalized
perturbation theory the result,

ρ0(ω) =
1

π∆0

[
1− ω2

2∆̄2
0

{
2 +

∆̄0

∆̄

(
Ū

π∆̄

)2
}]
· (37)

The value of the density of states at the Fermi level
for the results shown in Figure 10 are within 2% of the
Friedel sum rule result 1/π∆0 for all values of U . The ω2

behaviour in the very low energy region near the Fermi-
level is clear in the inset in Figure 10.

3.2 Dynamic spin and charge susceptibilities

We use the same approach to calculate the two particle
Green’s functions corresponding to the dynamic spin and
charge susceptibilities. The corresponding spectral densi-
ties are of the form

AQ(ω) =
1
Z

∑
nm

|〈n|Q|m〉|2δ
(
ω − (En −Em)

)
×
(
e−βEm − e−βEn

)
(38)

with Q = gµB(nd,↑ − nd,↓)/2 for spin and Q = (nd,↑ +
nd,↓ − 1)/2 for charge. This is similar in form to that for
the single particle Green’s function given in equation (25),
which corresponds to Q = c†dσ with a difference in sign in
the factor in the last bracket due to the use of the com-
mutator rather than the anticommutator for the spin and
charge Green’s functions. Using the procedure outlined in
the appendix these can be expressed in terms of reduced
matrix elements and the degeneracy with respect to Tz can
be explicitly summed over (see Eq. (51)). Both the oper-
ators for spin and charge transform as irreducible tensors
of the form Q1

0, and the result in each case gives

AQ(ω) =
1

3Z

∑
nm

|〈n||Q||m〉|2δ
(
ω − (En −Em)

)
×
(
e−βEm − e−βEn

)
(39)

where 〈n||Q||m〉 is the reduced matrix element (see
Eq. (51)).

The dynamic susceptibilities for the non-interacting
model (U = 0) can be evaluated analytically. There are
two parts to the d contribution to the spin susceptibility
χs(ω). One arises from the bubble diagram, Figure 11a,
where the propagators involved are those corresponding
to a component of the vector Majorana fermion which we
denote by χvv

d (ω) (in which we absorb factors of gµB). This
contribution is just half of that obtained for the standard
symmetric Anderson model with the real part given by

Reχvv
d =

∆/4π
(ω2 + 4∆2)

{
ln
∣∣∣∣ ∆2

ω2 +∆2

∣∣∣∣+ 4∆
ω

tan−1
( ω
∆

)}
,

(40)

(b)
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and the imaginary part by

Imχvv
d (ω) =

∆/2π
(ω2 + 4∆2)

{
∆

ω
ln
∣∣∣∣1 +

ω2

∆2

∣∣∣∣+ tan−1
( ω
∆

)}
.

(41)

The other contribution, which we denote by χvs
d (ω), is

from bubble diagram, Figure 11b, in which one of the
propagators corresponds to a component of the vector Ma-
jorana fermion while the other propagator is for the scalar
Majorana fermion. The real part is given by

Reχvs
d (ω) =

ω2∆/4π
(ω2 +∆2

0 −∆2)2 + 4ω2∆2

×
{(

ω2 −∆2
0 +∆2

2ω2

)
ln
∣∣∣∣ ∆2

ω2 +∆2
0

∣∣∣∣
+

2∆0

ω
tan−1

(
ω

∆0

)}
+{similar term with ∆0 ↔ ∆}, (42)

and the imaginary part by

Imχvs
d (ω) =

ω∆∆0/4π
(ω2 +∆2

0 −∆2)2 + 4ω2∆2

×
{(

ω2 −∆2
0 +∆2

ω∆0

)
tan−1

(
ω

∆0

)
+ln

∣∣∣∣ (ω2 +∆2)
∆2

0

∣∣∣∣
+similar terms with ∆0 ↔ ∆

}
. (43)

In the limit ∆0 → ∆ the vector-scalar contribution is the
same as the vector-vector contribution and we recover the
results for the dynamic susceptibility of the symmetric
Anderson model. In the limit ∆0 → 0, where we have a
zero mode, the real part of the vector-scalar contribution
develops a logarithmic singularity,

Reχvs
d (ω) =

∆

4π(ω2 +∆2)
ln
∣∣∣∣∆ω
∣∣∣∣ , (44)

and the imaginary part has a discontinuity at the origin,

Imχvs
d (ω) =

sgn(ω)∆
8(ω2 +∆2)

· (45)
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We also have some exact results for U 6= 0 from the Shiba
relation which relates the imaginary part of χs(ω)/ω for
the impurity to the real part of χs(ω) in the limit ω → 0,

limω→0

{
Imχs(ω + iδ)

2πω

}
=

(Reχs(0))2

(gµB)2
· (46)

This result, however, is only applicable to the standard
symmetric Anderson model where ∆0 = ∆.

We can use the exact results we have for this model
to gauge the accuracy of our NRG calculations. In Fig-
ure 12 we plot the imaginary part of χs(ω) divided by the
square of the real part for various values of U . According
to the Shiba relation these should all pass through the
same point at ω = 0 and this is clearly seen in the results
Figure 12. The actual value at this point is about 8% too
high, reflecting errors of a few % in the individual suscepti-
bilities. The overall accuracy over the full frequency range
can be gauged by a comparison of the NRG results with
the exact results deduced from equations (40, 41, 42, 43)
for U = 0. In Figure 13 we plot the NRG results for the
real part of χs(ω) for various values of ∆0, and compare
them with the analytic results. It can be seen that the
two sets of results are in good agreement over the com-
plete frequency range.

To see how the dynamic spin susceptibility for finite
U differs from that for the standard symmetric Ander-
son model we have plotted both the imaginary part and
real part in Figures 14 and 15 for U/π∆ = 1.5 and
various values of ∆0. As we reduce ∆0 the imaginary
part changes more and more rapidly at ω = 0 until fi-
nally for ∆0 = 0 it has a finite discontinuous jump at
this point as can be in Figure 16, where the results
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Fig. 13. The real part of the dynamic spin susceptibility χs (ω)
for the non-interacting model: V = 0.01414
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Fig. 14. The imaginary part of the dynamic spin sus-
ceptibility χs (ω) in the Fermi liquid situation: V =
0.01414
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for ∆0 = 0 are shown for various values of U .
The peak in real part of the spin susceptibility narrows
considerably on reducing ∆0 as can be seen in Figure 15.
To be able to compare the results for various values of
∆0 the values shown in Figure 15 have been multiplied by
the factor 1/χs(0), so it is not so apparent that the nar-
rowing is accompanied by a sharp increase in the absolute
value at low frequencies. In the limit ∆0 = 0 the real part
of χs(ω) has a singularity at ω = 0. A discontinuity in
the imaginary part of χs(ω) for ∆0 = 0 at ω = 0 with a
logarithmic singularity in the real part is predicted from
equations (44, 45) for U = 0, so it is not surprising that
these features persist for small values of U . For large U
we can make predictions from our results about the be-
haviour of the spin susceptibility of the corresponding two
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channel Kondo model over the full frequency range. We
look at this in detail in the next section.

4 Spin dynamics of the two channel Kondo
model

In the large U regime we can apply the mapping the O(3)
Anderson model in the localized limit and the NRG re-
sults of previous section to deduce the spin dynamics of
the two channel Kondo model over the complete frequency
range. As the mapping is for the spin degrees of freedom
of the TCKM, which is the only part with an interaction
term, it cannot be used to calculate all the relevant prop-
erties of the TCKM, only those where the other degrees
of freedom of the conduction electrons do not contribute.
It can be used for example to deduce the the impurity
contribution to the thermodynamics, such as susceptibil-
ity and specific heat, and also for the spin dynamics of
the impurity, where the uncoupled degrees of freedom fac-
torize and cancel out. This is a distinct advantage for
NRG calculations to use the equivalent in one channel
model because a larger percentage of the states can be
retained after each diagonalization in the iterative proce-
dure. The number of states that can retained be at each
stage is proportional to 1/4Nc, where Nc is the number of
channels, so this can be serious limitation when the num-
ber of channels is increased. However, quite apart from
these practical considerations, the relation between the
TCKM and the O(3) Anderson model provides a simple
way of understanding in terms of renormalized Majorana
fermions [4,5].

We saw in the previous section that the real part of the
dynamic spin susceptibility (∆0 = 0) at T = 0 has a log-
arithmic singularity in ω for U = 0 and that in the NRG
results this singular behaviour persists for finite U . Such
a term in lnω has also been found in direct NRG calcula-
tions of the dynamic susceptibility for the TCKM [23]. To
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Fig. 16. The imaginary part of the dynamic spin suscep-
tibility χs (ω) in the marginal Fermi liquid situation: V =
0.01414, V0 = 0.0

�
∆ = 10−4π,∆0 = 0.0

�
.

analyse the situation in the large U limit to use the map-
ping to the TCKM it is useful to work with a conserved
quantity, which in this case is not the spin but T the spin
plus isospin. The corresponding local dynamic suscepti-
bility we denote by χt(ω), where t = σd + τd. Because
the charge fluctuations of the impurity are suppressed for
large U this susceptibility becomes identical with the spin
susceptibility in the large U limit. We can use the NRG
approach described in the last section to calculate χt(ω)
and verify this explicitly. We find for U/π∆ = 4 at the
most a 5% difference between χt(ω) and χs(ω) over the
complete low frequency range ω � U .

For the large U regime we can apply our renormal-
ized perturbation approach to calculate the ω dependence
of χt(ω), following the same steps we used in our ear-
lier work to calculate its temperature dependence in the
zero frequency limit [4]. We first calculate the contribu-
tion due to the non-interacting renormalized Majorana
fermions. This is given by the vector-vector bubble shown
in Figure 11a, together with an overall factor of 4 and ∆
replaced by ∆̄ so that for T = 0,

Reχt(ω)=
∆̄

π(ω2+4∆̄2)

{
ln
∣∣∣∣ ∆̄2

ω2+∆̄2

∣∣∣∣+ 4∆̄
ω

tan−1
( ω
∆̄

)}
·

(47)

Because the single particle Green’s function and the quasi-
particle Green’s function in the renormalized perturbation
approach differ by a wavefunction renormalization factor
z̄, one might have expected an extra z̄2 multiplying (47)
to give the two particle Green’s function corresponding to
the dynamic susceptibility. This is not the case because
there is a compensating factor associated with the cou-
pling to the external field. The net result is that these
two terms cancel so that in the quasiparticle Hamilto-
nian in the presence of a external field the quasi-particles
are coupled to the field with the same coupling as the
bare particles, i.e. there is no g-factor renormalization.
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In the zero frequency limit (47) gives χt(0) = 1/π∆̄, which
corresponds to zero temperature impurity contribution to
the total susceptibility we found in our earlier work in the
same limit. The leading order correction term to this result
arises from a second order term in Ū , shown in Figure 17,
where the scalar-vector bubble shown in Figure 11, gives
a lnω contribution similar to the lnT dependence in the
same susceptibility at ω = 0 see [4], so that asymptotically
as ω → 0 we find

Reχt(ω) =

(
1
π∆̄
−
(
Ū

π∆̄

)2 ln(ω/∆̄)
π∆̄

)
. (48)

The correspondence of the calculation of the lnω terms
with the calculation of the ln T terms for the zero fre-
quency susceptibility is so precise that we can appeal to
arguments in our earlier work [4] to show that higher or-
der lnω terms cancel in the same way as the higher order
lnT terms.

Though we cannot explicitly carry out the full renor-
malization programme to calculate the renormalized pa-
rameters Ū and ∆̄ in terms of the bare parameters U and
∆, we can use the results Ū/π∆̄ = 1, π∆̄ = TK from our
earlier work, which were obtained by equating the expres-
sions for the temperature dependence of the susceptibility
in the large U limit. We then find for the asymptotic be-
haviour of the dynamic susceptibility of the two channel
Kondo model χKM(ω) as ω → 0, ω = 0 see [4], so that
asymptotically as ω → 0 we find

ReχKM(ω) =
1
TK

(1− ln(ωπ/TK)) . (49)

In Figure 18 we plot the real part of both χt(ω) and χs(ω)
versus ln(ω) for U/π∆ = 4 and the asymptotic form given
in equation (49) is clearly seen in the low frequency limit.
We have also calculated TK both from the limiting form
of χt(T ) as T → 0 and χt(ω) as ω → 0, for U/π∆ = 4 and
V = 0.00141 and find TK = 1.3± 0.2 and TK = 1.28± 0.1,
respectively, which confirms the result (49) to within the
error limits of the calculations.

5 Conclusions

We have shown that O(3) Anderson model in the large U
limit can describe precisely the interacting spin degrees of
freedom of the linear dispersion two channel Kondo model.
This extends earlier work in that it establishes that this
relationship applies over the full energy range of the two
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Fig. 18. The real part of the dynamic spin susceptibili-
ties χt (ω) and χs (ω)in the marginal Fermi liquid situation:
V = 0.01414, V0 = 0.0
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, U/π∆ = 4.0,

displaying linear dependence on ln (ω) in the low energy region.

channel model and not just in the immediate region of
the low energy fixed point. It enables us to calculate the
impurity contribution to the thermodynamics, and also
the impurity spin dynamics, for the TCKM from the O(3)
Anderson model in the strong correlation regime. This has
a number of advantages. The O(3) model is most conve-
niently expressed in terms of Majorana fermions and the
low energy fixed point of this model corresponds to free
Majorana fermions whatever the value of the on-site in-
teraction U , so the nature of the fixed point is the same in
weak and strong coupling. This is similar to the standard
Anderson model, which has a Fermi liquid fixed point, in-
dependent of the value of U . The main difference between
the O(3) and the standard Anderson model, is that O(3)
model has a zero mode in the case that corresponds to the
channel isotropic TCKM which results in singular scat-
tering of the renormalized Majorana fermions giving rise
to logarithmically divergent contributions to the impurity
specific heat coefficient, susceptibility, and dynamic spin-
spin response function. This singular low energy behaviour
corresponds the marginal Fermi liquid theory that was put
forward to describe the anomalous behaviour observed in
the normal state of the cuprate superconductors [24]. The
description of the TCKM in terms of Majorana fermions
not only gives a simple interpretation of the many-body
excitations at the low energy fixed point, both for the
channel isotropic and anisotropic cases, but can also be
applied on all energy scales.

To find the renormalizations of the Majorana fermions
explicitly we use the NRG approach to calculate the Ma-
jorana spectral densities. We have calculated weight of
the zero Majorana fermion mode and have shown that
it decreases exponentially with U in the large U regime.



548 The European Physical Journal B

We have also demonstrated the |ω| behaviour of the other
Majorana fermion modes in the marginal Fermi liquid case
as ω → 0. We have used the same approach to calculate
the two particle response functions which we have deter-
mined over the full frequency range for T = 0. We have
exploited the mapping between the models to deduce the
local dynamic spin susceptibility of the TCKM. Renormal-
ized perturbation theory has been used to interpret the
results and to calculate the the coefficient of the lnω term
in the asymptotic form of the real part of the dynamic
spin susceptibility of the TCKM in the limit ω → 0.

We are grateful for the support of an EPSRC research grant
(GR/J85349), and for a DFG research grant (Bu965-1/1) for
one of us (RB).

Appendix

Here we outline the steps involved in the evaluation of the
spectral density given in equation (25). The many-body
states |n〉 are classified using the quantum numbers T and
Tz of the total angular momentum (spin plus isospin) and
expressed in the form |Tn, Tz,n, wn〉, where wn labels any
further degeneracies of the state |n〉. The degeneracies as-
sociated with the z-component of angular momentum in
(25) can be summed over explicitly. The creation and an-
nihilation operators, c†d,σ and c†d,σ, first of all have to be
expressed in terms of the irreducible tensor operators V kq ,
k = 1, 0, q = 1, 0, −1. From equation (32) in reference [3],

V 0
0 =

1√
2

(cd,↓ + c†d,↓)

V 1
1 = c†d,↑

V 1
0 =

1√
2

(cd,↓ − c†d,↓)

V 1
−1 = −cd,↑. (50)

Then the Wigner-Eckart Theorem,

〈T ′, T ′z, w′|V kq |T, Tz, w〉 =
1√

2T ′ + 1
〈T ′, w′||V kq ||T,w〉

× 〈T, Tz, k, q|T ′, T ′z, 〉 (51)

is used to express all the matrix elements in terms
of the reduced matrix elements 〈T ′, w′||V kq ||T,w〉 which
are independent of the Tz quantum numbers, where
〈T, Tz, k, q|T ′, T ′z, 〉 are the Clebsch-Gordon coefficients.

For example for the spin down matrix elements we find∣∣∣∣〈n∣∣∣c†d↓∣∣∣m〉∣∣∣∣2 =
∣∣∣∣〈Tn, Tz,n, wn∣∣∣c†d↓∣∣∣Tm, Tz,m, wm〉∣∣∣∣2

=
∣∣∣∣〈Tn, Tz,n, wn∣∣∣ 1√

2

(
V 1

0 − V 0
0

) ∣∣∣Tm, Tz,m, wm〉∣∣∣∣2
=

1
2(2Tn+1)

∣∣∣∣〈Tn, wn∣∣∣∣∣∣V 1
0

∣∣∣∣∣∣Tm, wm〉〈Tm, Tz,m, 1, 0∣∣∣Tn, Tz,n〉

−
〈
Tn, wn

∣∣∣∣∣∣V 0
0

∣∣∣∣∣∣Tm, wm〉δTn,TmδTz,n,Tz,m∣∣∣∣2. (52)

For Tn 6= Tm, the V 0
0 -term does not contribute and for

this term we find

∑
Tz

∣∣∣∣〈n∣∣∣c†d↓∣∣∣m〉∣∣∣∣2 =
1

2(2Tn + 1)

∣∣∣∣〈Tn, wn∣∣∣∣∣∣V 1
0

∣∣∣∣∣∣Tm, wm〉∣∣∣∣2

×
∑
Tz

∣∣∣∣〈Tm, Tz, 1, 0∣∣∣Tn, Tz〉∣∣∣∣2 =
1
6

∣∣∣∣〈Tn, wn∣∣∣∣∣∣V 1
0

∣∣∣∣∣∣Tm, wm〉∣∣∣∣2.
(53)

For the case Tn=Tm= T we find

∑
Tz

∣∣∣∣〈n∣∣∣c†d↓∣∣∣m〉∣∣∣∣2 =

1
6

∣∣∣∣〈T,wn∣∣∣∣∣∣V 1
0

∣∣∣∣∣∣T,wm〉∣∣∣∣2 +
1
2

∣∣∣∣〈T,wn∣∣∣∣∣∣V 0
0

∣∣∣∣∣∣T,wm〉∣∣∣∣2.
(54)

The reduced matrix elements 〈Tn, wn||V q0 ||Tm, wm〉 are
calculated from those of the previous iteration in two
steps. We start from the expression for the reduced matrix
element with respect to the eigenstates of the impurity-
conduction electron chain with N + 1 sites,〈
Tn, wn

∣∣∣∣∣∣V q0 ∣∣∣∣∣∣Tm, wm〉
N+1

=∑
rn,pn,rm,pm

UTn(wn, rn, pn)UTm(wm, rm, pm)

×
〈
Tn, rn, pn

∣∣∣∣∣∣V q0 ∣∣∣∣∣∣Tm, rm, pm〉
N+1

, (55)

in terms of the basis states |Tn, rn, pn〉N+1 used for this
calculation (these are constructed from the eigenstates of
the N site chain |Tn, rn〉N and the states for the additional
site labelled by pn, see reference [3] for further details).
The coefficients UTn(wn, rn, pn) are the components of
the eigenstate |Tn, wn〉N+1 with respect to this basis. The
reduced matrix elements 〈Tn, rn, pn||V q0 ||Tm, rm, pm〉N+1

have to be related to the reduced matrix elements of the
previous step as follows:
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The matrix elements between all states at intermediate
steps have to be calculated. The initial values are〈1

2
, 1
∣∣∣∣∣∣V 1

0

∣∣∣∣∣∣1
2
, 2
〉

= −
√

3〈1
2
, 1
∣∣∣∣∣∣V 0

0

∣∣∣∣∣∣1
2
, 2
〉

= 1〈1
2
, 2
∣∣∣∣∣∣V 1

0

∣∣∣∣∣∣1
2
, 1
〉

= −
√

3〈1
2
, 2
∣∣∣∣∣∣V 0

0

∣∣∣∣∣∣1
2
, 1
〉

= −1.

The spectral density of the spin up Green’s function can be
evaluated in a similar way and is found to depend only on
the matrix element of the tensor operator V 1

0 and not on
V 0

0 . This Green’s function is the same as that of the α = 1
or α = 2 Majorana fermion Green’s functions, which are
equal and equivalent to the Green’s function for the α = 3
Majorana fermion as a result of the O(3) symmetry of the
model. We can deduce that V 1

0 is associated with the α =
1, 2, 3 Majorana fermions and V 0

0 with the α = 0 Majorana
fermion. As spin down Green’s function is the half the
sum of the Green’s functions for the Majorana fermions
for α = 0, 3 we can deduce that the term involving V 0

0

in the final formula for the spectral density of the spin
down Green’s function is the spectral density of the α = 0
Majorana fermion (apart from a factor 1/2) and, similarly,
the term in V 1

0 is the spectral density of the α = 1, 2, 3
Majorana fermions.
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